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In this paper a ring shaped region containing all the zeros of the polynomial
p(2) = apz™ + ay_yz ' + - + a,z + a, has been obtained. Our result is best
possible and sharpens some well-known results.

1. INTRODUCTION AND STATEMENT OF RESULTS
Let p(z) = z" + a,_1z" ' + - 4+ @z + a, be a polynomial of degree n.

Then concerning a region which contains all the zeros of p(z), we have the
following result from Cauchy [1].

THEOREM A. All the zeros of the complex polynomial p(z) = Z::OI az -
z® lie in the disc

[z] <1+ 4, (1.1
where
A= max |a;].
0<j<n1

As an improvement Joyal, et al. [2] proved the following theorem.

THEOREM B. Let p(z) = z* + Z::; a,z’ be a polynomial of degree n, and
let B = maXygicn_y | @; | . Then all the zeros of p(z) lie in the disc

lz] <#l 4+ apa | + [(1 — [ any )* + 4813, (1.2)
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The expression (1.2) takes a very simple form if ¢, ; = 0. If |a, ;| = 1,
it reduces to 1 + B2, which is smaller than the bound obtained in Theorem
A.1f | a,_; | = B, Theorem B fails to give an improvement of Theorem A.
In this paper we obtain a ring-shaped region containing all the zeros of p(z).
The outer radius of the ring is smaller than | -- 4 even in the case when
| a,., | = B. More precisely, we prove the following

THeEOREM 1. If p(2) == z" + a,_z"' + - 4+ ayz + aq is a polynomial of
degree n and A = MaXycj<n_y | @; |, then p(z) has all its zeros in the ring-
shaped region

| a |
2(1 -+ A1 (An + 1)

<zt <1+ dA, (1.3)

where Ay is the unique root of the equation x = | — /(1 + Ax)* in the
interval (0, 1). The upper bound 1 + A4 in (1.3) is best possible and is attained
Jor the polynomial p(z) = z* — A(z*' + -+ +z + 1).

If we do not wish to look for the roots of the equation x = 1 - 1/(I -+ Ax)”,
we can still obtain a result which is an improvement of Theorem A, even in
the case | a,_; | == 8:

THEOREM 2. Let p(z) = Z:)l a,z’ + z™ be a polynomial of degree n and
let A == maXyc;jcny | a5 | . Then p(2) has all its zeros in the ring-shaped region
given by

!aﬁ! [ — _ l—_
2(1+A),,,1(M+])<_4|\\\1+(1 —ﬁA)n)A. (1.4)

If we apply Theorem 1 to z"p(1/z), we get

COROLLARY 1. Let p(z) = | + ¥, a,z* be a polynomial of degree n and
let A = max <<, | @; | . Then p(z) has no zero in the disc

I
ST A

l z

where A, is the unique root of the equation x =1 — 1/(1 -- Ax)* in the
interval (0, 1).

Similarly, on applying Theorem 2 to z"p(1/z), we get
COROLLARY 2. If p(z) =1 + X, a,z" is a polynomial of degree n and
A = max,g;<, | a; |, then p(z) has no zero in the disc
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2. LEMMAS.

LEMMA |. Let f(x) =x— 1+ 1/(1 + Ax)*, where n is a positive
integer and A > 0. Then if nA < 1, f(x) is monotonically increasing for x = 0.
Ifnd > 1, then there exists a 6 > 0 such that f(x) is monotonically decreasing
in the interval [0, 8].

Proof of Lemma 1. Note that f'(x) =1 — nd/(1 + Ax)*"'. Hence if
nA4 < 1, then f'(x) > 0 for x > 0, which implies that f(x) is monotonically

increasing for x > 0. If n4 > 1, then f'(0) < 0 and hence there exists a
6 > 0 such that f'(x) < 0in (0, 8). This completes the proof of Lemma 1.

LEMMA 2. Let f(x) = x — 1 4+ 1/(1 + Ax)", where n is a positive integer
and A > 0. If nA > 1, then f(x) has a unique root in the interval (0, 1).

Proof of Lemma 2.

(1 - Ax)" f(x) = (1 + Ax)" (x — 1) + 1

é()(Ax)" x—1) =1

S T B R

k(A + 1) — A(n -+ 1)] x* + Anxnet,
2.1)

1
- g kl(n— k -+ 1)

Since n4 > 1, the coefficient of x"*1 is positive and k(4 + 1) — A(n — 1)
is monotonically increasing for k > 1, it follows from Descartes’ rule of
signs that (I -+ Ax)* f(x) = 0 has exactly one positive root. Now by
Lemma 1, f(x) < 0 for all small, positive. Also f(1) > 0. Hence f(x) = 0 has
one and only one root in (0, 1) and Lemma 2 follows.

3. PROOF OF THE THEOREMS

Proof of Theorem 1. First we prove that p(z) has all its zeros in ; z = <
1 + Ay4, and for this it is sufficient to consider the case when nd > 1 (for if
nAd <1,thenon|z|=R>1,|p(z)] = R" — nAR"1 = R" — R"! > ().
Following the proof of [3, Theorem (27, 2), p. 123] we get
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1—Aim—f'

=1

lp() =z

n—1
=lz|"—A4} |zV
Jj=0

lz|" —1

:|Z]"—A"Tz’—_—]— (3.1)

Hence for every A > 0, we have on | z | = 1 4 AA,

L p(2)] = (1 + Ad) —(LiA/\’\)Ll o,

if

A>1 (3.2)

1
Ay

Thus, if A, is the unique root (Lemma 2) of the equation x = 1 — 1/(1 + Ax)"
{0, 1) then every A > A, satisfies (3.2) and hence | p(z)] > Oon |z | =1 + AA,
which implies that p(z) has all its zeros in | z | << 1 4+ AA,.

Next we prove that p(z) hasno zero in | z | < | a, |/[2(1 + A)"71 (1 + nA)l.
If we denote by g(z) the polynomial (1 — z) p(z), then

n—1
g(Z) = dy + 2 (av - avwl) z + " — anﬂlzn — znH
v=1
= a, + h(z), say.

If R =1-+ A, then
n—1
ma)}t "h(z)) < RMY 4 R+ Ja, i R" Z la, —a,4 | R
zl= v=1

SRR+ 1+ A+ (21— 2) A]
=2(1 + A" (nd + 1. (3.3)

Henceon | z] << R,

182} = [ ay + h(z)|
= lag| — | h(2)]

- (f}j IA) max, | h(2)] by Schwarz’s lemma,

= | ayl



82 DATT AND GOVIL

P V(—]r#}‘i—)wZ(l Ay (nA - Db by (3.3).

T2l - At (A - 1)y

= 0 if =

and the proof of Theorem | is complete.

We omit the proof of Theorem 2 as it follows the same lines as that of
Theorem 1, noting that the inequality (3.2) is satisfied in particular (if 4 == 0)
for A =1 — /(1 + A~

We are extremely grateful to Professor M. Marden for suggesting a simpler
proof of the right inequality in (1.3).

REFERENCES

1. A. L. Caucny, “Exercises de mathématiques,” IV Année de Bure Fréres, Paris, 1829.

2. A. Jovar, G. LABELLE, AND Q. [. RAHMAN, On the location of Zeros of Polynomials,
Canad. Math. Bull. 10 (1967), 53-63.

3. M. MARDEN, “Geometry of Polynomials,” Amer. Math. Soc. Math. Surveys, No. 3,
Amer. Math. Soc. Providence, R. L., 1966.



