On the Location of the Zeros of a Polynomial

Brham Datt
Department of Mathematics, Haryana Agricultural University, Hissar, India

AND
N. K. Govil

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi-110029, India

Communicated by Oved Shisha
Received March 4, 1977

In this paper a ring shaped region containing all the zeros of the polynomial $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ has been obtained. Our result is best possible and sharpens some well-known results.

1. Introduction and Statement of Results

Let $p(z)=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ be a polynomial of degree n. Then concerning a region which contains all the zeros of $p(z)$, we have the following result from Cauchy [1].

Theorem A. All the zeros of the complex polynomial $p(z)=\sum_{v=0}^{n-1} a_{v} z^{\nu}+$ z^{n} lie in the disc

$$
\begin{equation*}
z \mid \leqslant 1+A \tag{1.1}
\end{equation*}
$$

where

$$
A=\max _{0 \leqslant j \leqslant n-1}\left|a_{j}\right|
$$

As an improvement Joyal, et al. [2] proved the following theorem.

Theorem B. Let $p(z)=z^{n}+\sum_{y=0}^{n-1} a_{v} z^{y}$ be a polynomial of degree n, and let $\beta=\max _{0 \leqslant \leqslant<n-1}\left|a_{j}\right|$. Then all the zeros of $p(z)$ lie in the disc

$$
\begin{equation*}
|z| \leqslant \frac{1}{2}\left\{1+\left|a_{n-1}\right|+\left[\left(1-\left|a_{n-1}\right|\right)^{2}+4 \beta\right]^{1 / 2}\right\} \tag{1.2}
\end{equation*}
$$

The expression (1.2) takes a very simple form if $a_{n-1}=0$. If $\left|a_{n-1}\right|=1$, it reduces to $1+\beta^{1 / 2}$, which is smaller than the bound obtained in Theorem A. If $\left|a_{n-1}\right|=\beta$, Theorem B fails to give an improvement of Theorem A . In this paper we obtain a ring-shaped region containing all the zeros of $p(z)$. The outer radius of the ring is smaller than $1-A$ even in the case when $\left|a_{n-1}\right|=\beta$. More precisely, we prove the following

Theorem 1. If $p(z)==z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ is a polynomial of degree n and $A=\max _{0 \leqslant j \leqslant n-1}\left|a_{j}\right|$, then $p(z)$ has all its zeros in the ringshaped region

$$
\begin{equation*}
\frac{\left|a_{0}\right|}{2(1+A)^{n-1}(A n+1)} \leqslant \mid z \leqslant 1-\lambda_{0} A \tag{1.3}
\end{equation*}
$$

where λ_{0} is the unique root of the equation $x=1-1 /(1+A x)^{n}$ in the interval $(0,1)$. The upper bound $1+\lambda_{0} A$ in (1.3) is best possible and is attained for the polynomial $p(z)=z^{n}-A\left(z^{n-1}+\cdots+z+1\right)$.

If we do not wish to look for the roots of the equation $x=1-1 /(1+A x)^{n}$, we can still obtain a result which is an improvement of Theorem A, even in the case $\left|a_{n-1}\right|=\beta$:

Theorem 2. Let $p(z)=\sum_{v=0}^{n-1} a_{v} z^{\nu}+z^{n}$ be a polynomial of degree n and let $A=\max _{0 \leqslant j \leqslant n-1}\left|a_{j}\right|$. Then $p(z)$ has all its zeros in the ring-shaped region given $b y$

$$
\begin{equation*}
\frac{\left|a_{0}\right|}{2(1+A)^{n-1}(n A+1)} \leqslant|z| \leqslant 1+\left(1-\frac{1}{(1+A)^{n}}\right) A \tag{1,4}
\end{equation*}
$$

If we apply Theorem 1 to $z^{n} p(1 / z)$, we get
Corollary 1. Let $p(z)=1+\sum_{v=1}^{n} a_{v} z^{\nu}$ be a polynomial of degree n and let $A=\max _{1 \leqslant j \leqslant n}\left|a_{j}\right|$. Then $p(z)$ has no zero in the disc

$$
z:<\frac{1}{1+\lambda_{0} A}
$$

where λ_{0} is the unique root of the equation $x=1-1 /(1+A x)^{n}$ in the interval (0,1).

Similarly, on applying Theorem 2 to $z^{n} p(1 / z)$, we get
Corollary 2. If $p(z)=1+\sum_{v=1}^{n} a_{v} z^{v}$ is a polynomial of degree n and $A=\max _{1 \leqslant j \leqslant n}\left|a_{j}\right|$, then $p(z)$ has no zero in the disc

$$
|z|<\frac{1}{1 \dot{\top}\left(1-1 /(1+A)^{n}\right) A}
$$

2. Lemmas.

Lemma 1. Let $f(x)=x-1+1 /(1+A x)^{n}$, where n is a positive integer and $A>0$. Then if $n A \leqslant 1, f(x)$ is monotonically increasing for $x \geqslant 0$. If $n A>1$, then there exists $a \delta>0$ such that $f(x)$ is monotonically decreasing in the interval $[0, \delta]$.

Proof of Lemma 1. Note that $f^{\prime}(x)=1-n A /(1+A x)^{n+1}$. Hence if $n A \leqslant 1$, then $f^{\prime}(x)>0$ for $x>0$, which implies that $f(x)$ is monotonically increasing for $x \geqslant 0$. If $n A>1$, then $f^{\prime}(0)<0$ and hence there exists a $\delta>0$ such that $f^{\prime}(x)<0$ in $(0, \delta)$. This completes the proof of Lemma 1.

Lemma 2. Let $f(x)=x-1+1 /(1+A x)^{n}$, where n is a positive integer and $A>0$. If $n A>1$, then $f(x)$ has a unique root in the interval $(0,1)$.

Proof of Lemma 2.

$$
\begin{align*}
(1+A x)^{n} f(x) & =(1+A x)^{n}(x-1)+1 \\
& =\sum_{k=0}^{n}\binom{n}{k}(A x)^{k}(x-1)+1 \\
& =\sum_{k=1}^{n}\left[A^{k-1}\binom{n}{k-1}-A^{k}\binom{n}{k}\right] x^{k}+A^{n} x^{n+1} \\
& =\sum_{k=1}^{n} \frac{A^{k-1} n!}{k!(n-k+1)!}[k(A+1)-A(n+1)] x^{k}+A^{n} x^{n+1} \tag{2.1}
\end{align*}
$$

Since $n A>1$, the coefficient of x^{n+1} is positive and $k(A+1)-A(n-1)$ is monotonically increasing for $k \geqslant 1$, it follows from Descartes' rule of signs that $(1+A x)^{n} f(x)=0$ has exactly one positive root. Now by Lemma $1, f(x)<0$ for all small, positive. Also $f(1)>0$. Hence $f(x)=0$ has one and only one root in $(0,1)$ and Lemma 2 follows.

3. Proof of the Theorems

Proof of Theorem 1. First we prove that $p(z)$ has all its zeros in: $z \leqslant$ $1+\lambda_{0} A$, and for this it is sufficient to consider the case when $n A>1$ (for if $n A \leqslant 1$, then on $\left.|z|=R>1,|p(z)| \geqslant R^{n}-n A R^{n-1} \geqslant R^{n}-R^{n-1}>0\right)$. Following the proof of [3, Theorem (27, 2), p. 123] we get

$$
\begin{align*}
|p(z)| & \geqslant|z|^{n}\left\{1-A \sum_{j=1}^{n}|z|^{-j}\right\} \\
& =|z|^{n}-A \sum_{j=0}^{n-1}|z|^{j} \\
& =|z|^{n}-A \frac{|z|^{n}-1}{|z|-1} \tag{3.1}
\end{align*}
$$

Hence for every $\lambda>0$, we have on $|z|=1+A \lambda$,

$$
|p(z)|=(1+A \lambda)^{n}-\frac{(1+A \lambda)^{n}-1}{\lambda}>0
$$

if

$$
\begin{equation*}
\lambda>1-\frac{1}{(1+A \lambda)^{n}} \tag{3.2}
\end{equation*}
$$

Thus, if λ_{0} is the unique root (Lemma 2) of the equation $x=1-1 /(1+A x)^{n}$ $(0,1)$ then every $\lambda>\lambda_{0}$ satisfies (3.2) and hence $|p(z)|>0$ on $|z|=1+A \lambda$, which implies that $p(z)$ has all its zeros in $|z| \leqslant 1+A \lambda_{0}$.

Next we prove that $p(z)$ has no zero in $|z|<\left|a_{0}\right| /\left[2(1+A)^{n-1}(1+n A)\right]$. If we denote by $g(z)$ the polynomial $(1-z) p(z)$, then

$$
\begin{aligned}
g(z) & =a_{0}+\sum_{v=1}^{n-1}\left(a_{v}-a_{\nu-1}\right) z^{\nu}+z^{n}-a_{n-1} z^{n}-z^{n+1} \\
& =a_{0}+h(z), \text { say. }
\end{aligned}
$$

If $R=1+A$, then

$$
\begin{align*}
\max _{z \mid=R} h(z) \mid & \leqslant R^{n+1}+R^{n}+\left|a_{n-1}\right| R^{n}+\sum_{v=1}^{n-1}\left|a_{v}-a_{\nu-1}\right| R^{v} \\
& \leqslant R^{n}[R+1+A+(2 n-2) A] \\
& =2(1+A)^{n}(n A+1) \tag{3.3}
\end{align*}
$$

Hence on $|z| \leqslant R$,

$$
\begin{aligned}
|g(z)| & =\left|a_{0}+h(z)\right| \\
& \geqslant\left|a_{0}\right|-|h(z)| \\
& \geqslant\left|a_{0}\right|-\frac{|z|}{(1+A)} \max _{|z|=1+A}|h(z)|, \quad \text { by Schwarz's lemma }
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}-\frac{1 z}{(1 \cdots A)}\left\{2(1-A)^{n}(n A-1)\right. \text {. by (3.3). } \\
& 0 \quad \text { if }=<2(1-A)^{n-1}(n A-1)
\end{aligned}
$$

and the proof of Theorem I is complete.
We omit the proof of Theorem 2 as it follows the same lines as that of Theorem I, noting that the inequality (3.2) is satisfied in particular (if $A>0$) for $\lambda=1-1 /(1+A)^{\prime \prime}$.

We are extremely grateful to Professor M. Marden for suggesting a simpler proof of the right inequality in (1.3).

References

1. A. L. Cauchy, "Exercises de mathématiques," IV Année de Bure Fréres, Paris, 1829.
2. A. Joyal, G. Labelle, and Q. I. Rahman, On the location of Zeros of Polynomials, Canad. Math. Bull. 10 (1967), 53-63.
3. M. Marden, "Geometry of Polynomials," Amer. Math. Soc. Math. Surveys, No. 3, Amer. Math. Soc. Providence, R. I., 1966.
